The GPlates Portal: Cloud-based interactive 3D visualization of global

geophysical and geological data in a web browser

R. Dietmar Miiller, Xiaodong Qin, David T. Sandwell, Adriana Dutkiewicz, Simon E. Williams,

Nicolas Flament, Stefan Maus and Maria Seton

S1 Text

Virtual Globe Design Methodology

1) Preparing imagery tiles
a) Splitting large rasters into smaller pieces
Usually, the size of high-resolution raster files is very large, for instance, the size of
the SRTM15_PLUS global digital elevation model
(ftp://topex.ucsd.edu/pub/srtm15_plus) is more than 15 gigabytes. It is very difficult,
if not impossible, to process such large raster files on desktop or laptop computers
because of hardware and architecture limitations. Thus, we split the large raster into

smaller-sized pieces for further processing. The following GDAL command:

“gdal_translate —projwin 0 0 10 10 input.tif output.tif”

copies the raster data in a bounding box from the georeferenced input raster into an

output file. The rectangular bounding box is defined by the upper left corner

coordinates (0, 0) and lower right corner coordinates (10, 10). We supply the Python



script split_grid.py (S2 Script) which calls gdal_translate repeatedly to cut a large

raster file into smaller pieces.

b) Histogram equalization, color mapping and shading

Before applying simple linear or injective color mapping, histogram equalization on
raster data is necessary in order to avoid the dominance of a narrow range of the
color spectrum to be applied to the image. The color mapping function can be a
simple linear transformation, injective function or a more complicated image
processing algorithm. ImageMagick's ‘Pegtop_Light’ composition method and Esri’s
hillshade algorithm are used for shading in the GPlates Portal. We supply three
Python scripts (S3-S5 Scripts) as examples of histogram equalization, color mapping
and shading. The histeq.py contains a function which applies histogram equalization
and normalization to a two-dimensional numpy array. The shade() function in
shading.py applies shading to grid data. And the colouring.py constructs a matplotlib
colormap object from a list of colours and values, then applies color mapping to

input data.

c) Generate imagery tiles
Before generating imagery tiles for Cesium, all the georeferenced image pieces must
be bound together by creating a virtual raster with GDAL. The following GDAL

command:

gdalbuildvrt example.vrt *.tif



creates a virtual raster from all the georeferenced “.tif” files in the current working

directory. Eight levels of imagery tiles are then created for the input raster using the

command

The dimensions of tiles created are 256*256:

gdal2tiles.py —zoom="0-8" —s EPSG:4326 inputfile outputdir

The coordinates of imagery tiles comply with the OSGeo Tile Map Service
Specification. Figure 3 illustrates the tile coordinate system. The number of tiles is
2n+1

at level n. The number of tiles increases exponentially with zoom level. Cesium

uses this tiled imagery mechanism to display the very details of high resolution

rasters.
Y N
0,21 1,271 omip ong | 2711, 201
0,202 1,202 om1 onp | 2ng on.p
0,1 1,1 i1 | 2m-11
0,0 1,0 27120 2m1.1 0

Fig 1. Diagram of tile coordinates



Fig 1. shows an example of 4 tiles at zoom level 6 from the global Vertical Gravity
Gradient (VGG) map. The tiles are stored in separate files and Cesium will seamlessly

join the tiles and render the image on the 3D globe.

Fig 2. Example tiles from the global Vertical Gravity Gradient (VGG) map

2) Preparing terrain tiles
Terrain data are also known as a Digital Elevation Model (DEM). Cesium supports two
terrain data formats -- heightmap-1.0 and quantized-mesh-1.0. The coordinates of
terrain tiles are defined in the same way as imagery tiles. Each terrain tile has 65*65
height data and overlaps its neighbours at the edges. The terrain tiles are
compressed in gzip format in order to save disk space and minimize network traffic.
The size of an extracted tile file should be at least 8,452 bytes. The tile data consists

of three parts.



1. Height data

Each height value is a 2-byte integer (int16). In total, the height data are 65 * 65 *
2 = 8450 bytes.

2. Child Mask

Each terrain tile can have up to 4 child tiles. An 8-bit child mask follows the height
data immediately, which indicates the presence of child tiles. Only the last 4 bits
are used.

3. Water Mask

There is no need to render water in our applications. Thus, a 1-byte water mask is
used and the value is set to 0 to indicate that all terrain should be rendered as

land.

We supply the Python script terrain_tiles.py (S6 Script) as an example of generating

terrain tiles from elevation data.

3) Serving imagery and terrain tiles via URL
All the imagery and terrain tiles must be accessible via URLs. A HTTP server is
required to serve tiles via HTTP protocol. The URLs must follow the standard

convention. The standard URL convention is as follows:

http:/[YOUR-ROOT-URL/zoom-level/x/y.[jpg | terrain]



4)

The “YOUR-ROOT-URL” is the root location chosen to host the tiles. The “zoom-level”

“u.,n

indicates the level number of the tiles. The “x” and “y” are the tile coordinates. The

extension of imagery tiles is “.jpg”, and for terrain tiles, it is “.terrain”.

Building applications

a) Creating customized Imagery Provider and Terrain Provider for Cesium

Two interfaces must be implemented to create customized Imagery Provider and

Terrain Provider.

i)
i)

i)

The ImageryProvider Interface

The function requestimage() must be overridden in the customized imagery
provider. Cesium calls this function to get imagery tiles at runtime.
requestimage() takes the zoom level and tile coordinates as input and return
the requested imagery tile.

The TerrainProvider Interface

The most important function which must be overridden in customized terrain
provider is requestTileGeometry() which takes zoom level and tile coordinates

as input and returns terrain tile data.

b) Vertical exaggeration

Most topography on Earth is too insignificant to be noticeable at the global
scale without vertical exaggeration. Therefore, vertical exaggeration is
required to visualise terrain effectively. Vertical exaggeration can be achieved
easily by multiplying the elevation data by a factor in the
requestTileGeometry() function. In the GPlates Portal, this factor can easily be

controlled by users via the “Height Scale” dropdown list.



c) Geometry overlay
Vector data can be drawn on the Cesium globe and maps as polygons,
polylines and points. The geometry overlay allows users to mark the
geological features on the globe.

d) User Interface
The jQuery library can be used to create GUI elements to control the main

canvas or display additional information.



